Epitaxial Grain Growth During Surface Modification of Friction Stir Welded Aerospace Alloys by a Pulsed Laser System

نویسندگان

  • P. Ryan
  • S. W. Williams
چکیده

The liquid film re-growth behaviour resulting from pulsed laser surface melting (LSM) has been investigated for typical 2xxx, and 7xxx aerospace alloys, both on parent plate and friction stir welded (FSW) joints. In Zr free alloys, as a result of the high growth rate and steep thermal gradient, the melted layer re-grew with a stable front, epitaxially, from the parent subsurface grains. This caused a thin coarse grained solidified layer to form over the parent material, thermomechanically affected zone (TMAZ) and heat affected zone (HAZ), and fine columnar grains to develop over the FSW nugget zone of the same order in width as the nugget grain size. In the case of the Zr containing alloys, a very fine columnar grain structure was found over the entire surface, independent of the subsurface grain structure. This has been shown to occur by growth selection from a band of nanoscale Al grains epitaxially nucleated on Al3Zr dispersoids, at the melt solid interface, that had not fully dissolved in the melt.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grain structure and homogeneity of pulsed laser treated surfaces on Al-aerospace alloys and FSWs

The effect of pulsed excimer laser surface treatment, on typical Al-aerospace alloys and friction stir weld substrates, has been studied. A thin <10 m deep surface layer can be achieved, where the majority of the re-solidified material does not exhibit phase separation, and has a higher level of homogeneity relative to the substrate material. However, due to the extremely short melt times, the ...

متن کامل

Effect of heat treatment on the grain structure and mechanical properties of Al-7075 friction stir weld

The fine grain structure of friction-stir welded aluminum alloys is unstable during post weld heat treatment and some grains abnormally grown. In this study, the sequence of abnormal grain growth during T6 heat treatment of Al-7075 friction-stir weld and its effect on mechanical properties of the weld was studied. The results showed that heat treatment in 510 ˚C resulted in drastic grain growth...

متن کامل

Effect of heat treatment on the grain structure and mechanical properties of Al-7075 friction stir weld

The fine grain structure of friction-stir welded aluminum alloys is unstable during post weld heat treatment and some grains abnormally grown. In this study, the sequence of abnormal grain growth during T6 heat treatment of Al-7075 friction-stir weld and its effect on mechanical properties of the weld was studied. The results showed that heat treatment in 510 ˚C resulted in drastic grain growth...

متن کامل

Effect of Post-weld Heat Treatment on Joint Properties of Dissimilar Friction Stir Welded AA2024 and AA7075 Aluminum Alloys

In present study, the effect of heat treatment after friction stir welding dissimilar welds T6-7075 and T4-2024 aluminum alloys were investigated. Friction stir welding was performed at a constant rotation speed of 1140 rpm and welding speed 32 mm/min. After welding samples are taken under various heat treatment processes at different aging temperature and time period. Microstructural observati...

متن کامل

Effect of Post-weld Heat Treatment on Joint Properties of Dissimilar Friction Stir Welded AA2024 and AA7075 Aluminum Alloys

In present study, the effect of heat treatment after friction stir welding dissimilar welds T6-7075 and T4-2024 aluminum alloys were investigated. Friction stir welding was performed at a constant rotation speed of 1140 rpm and welding speed 32 mm/min. After welding samples are taken under various heat treatment processes at different aging temperature and time period. Microstructural observati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009